For circle rotations by angle θ,

$$
\begin{aligned}
\mathbb{R}_{\theta}: \mathbb{R} / 2 \pi \mathbb{Z} & \longrightarrow \mathbb{R} / 2 \pi \mathbb{Z} \\
{[x] } & \longmapsto[x+\theta]
\end{aligned}
$$

The condilious for an abl to be periodic is that $\theta=\frac{p}{q} 2 \pi$ where $p_{1} q$ are integers.

Similarly for $\quad \mathbb{R}_{\alpha}: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$

$$
[x]_{z} \mapsto[x+\alpha]_{z}
$$

the orbits are periodic if $\alpha=\frac{p}{q}$ for some $p \in \mathbb{Z}, q \in \mathbb{N}$. (i.e. α is a rational number)
i.e. $\alpha \in \mathbb{Q}=$ the set of rational

Exercise: Find a formula for ${ }_{Q}$ embers. using set builder notation

Sparse:

Opposite of finite/sporce? on \mathbb{R}, what does it mean for a set to be denise?

Example \mathbb{Q} is dense in \mathbb{R}.

Example $\{x \in \mathbb{Q}:|x| \geqslant 1\}$ is not dense in \mathbb{R}

len this set is not dense in \mathbb{R}
Definition $A \subset \mathbb{R}$ is not dense if there exists ar interval (a, b) that $(a, b) \cap A=\phi$.

Definition $A<\mathbb{R}$ is dense if for any interval $(a, b), \quad(a, b) \cap \mathbb{R} \neq \phi$.

Theorem \mathbb{Q} is dense in \mathbb{R}.
Proof we pick an interval, $(a, b) \subset R$

write x in its decimal expansion:

$$
\begin{gathered}
x=x_{n} x_{n-1} \ldots x_{0} \cdot x_{-1} x_{-2} x_{-3} \ldots \\
(e \cdot g \quad 947.32013 \ldots)^{(e n t}
\end{gathered}
$$

Define $x_{N}=x_{n} x_{n-1} \ldots x_{0} \cdot x_{-1} x_{-2} \cdots x_{-N}$ a
troncation of the decimals in x at the $N^{\text {th }}$ decimal.
observe that

$$
x-x_{N}=0 . \underbrace{00 \cdots 0}_{N 0^{\prime} s} x_{-N-1}^{0 x_{-N-2} x_{-N \rightarrow 3}}<\underbrace{0.0000 \cdots 01}_{N-10^{\prime} s}=\frac{1}{10^{N-1}}
$$

poo matter how small E is we can find an N suds that $\frac{1}{10^{n-1}}=10^{-(N-1)}<\varepsilon \quad\binom{$ Since $\left.10^{-(N-1)}\right)}{95 N \rightarrow \infty}$ thus $\quad|x-x p|<\varepsilon$
Exercise $\quad x_{N} \in(a, b)$
Since x_{N} is a rational, i.e $x_{N} \in \mathbb{Q}$ and the exercise above, then $X_{N} \in \mathbb{Q} \cap(a, b)$. proving that Q is dense in \mathbb{R}.

Tomorrow: the vil prove that there are only kwa types of subgroups in \mathbb{R}.
Either: $H=c \mathbb{Z}$ for some c.
oI H is a dense subgroup.

